Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat
Xiaojie Xu and
Yun Zhang
Intelligent Systems in Accounting, Finance and Management, 2022, vol. 29, issue 3, 169-181
Abstract:
Agricultural commodity price forecasting represents a key concern for market participants. We explore the usefulness of neural network modeling for forecasting problems in datasets of daily prices over periods of greater than 50 years for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat. By investigating different model settings across the algorithm, delay, hidden neuron, and data‐splitting ratio, we arrive at models leading to a decent performance for each commodity, with the overall relative root mean square error ranging from 1.70% to 3.19%. These results have small advantages over no‐change models due to particular price adjustments in the prices considered here. Our results can be used on a standalone basis or combined with fundamental forecasts in forming perspectives of commodity price trends and conducting policy analysis. Our empirical framework should not be diffucult to implement, which is a critical consideration for many decision‐makers and has the potential to be generalized for price forecasts of more commodities.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/isaf.1519
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:isacfm:v:29:y:2022:i:3:p:169-181
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1099-1174
Access Statistics for this article
More articles in Intelligent Systems in Accounting, Finance and Management from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().