Wild Bootstrap Inference for Wildly Different Cluster Sizes
James MacKinnon and
Matthew Webb
Journal of Applied Econometrics, 2017, vol. 32, issue 2, 233-254
Abstract:
The cluster robust variance estimator (CRVE) relies on the number of clusters being sufficiently large. Monte Carlo evidence suggests that the ‘rule of 42’ is not true for unbalanced clusters. Rejection frequencies are higher for datasets with 50 clusters proportional to US state populations than with 50 balanced clusters. Using critical values based on the wild cluster bootstrap performs much better. However, this procedure fails when a small number of clusters is treated. We explain why CRVE t statistics and the wild bootstrap fail in this case, study the ‘effective number’ of clusters and simulate placebo laws with dummy variable regressors. Copyright © 2016 John Wiley & Sons, Ltd.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (174)
Downloads: (external link)
https://doi.org/10.1002/jae.2508
Related works:
Working Paper: Wild Bootstrap Inference For Wildly Different Cluster Sizes (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:32:y:2017:i:2:p:233-254
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().