Differences Between Classical and Bayesian Estimates for Mixed Logit Models: A Replication Study
Ossama Elshiewy,
German Zenetti and
Yasemin Boztug
Journal of Applied Econometrics, 2017, vol. 32, issue 2, 470-476
Abstract:
The mixed logit model is widely used in applied econometrics. Researchers typically rely on the free choice between the classical and Bayesian estimation approach. However, empirical evidence of the similarity of their parameter estimates is sparse. The presumed similarity is mainly based on one empirical study that analyzes a single dataset (Huber J, Train KE. 2001. On the similarity of classical and Bayesian estimates of individual mean partworths. Marketing Letters12(3): 259–269). Our replication study offers a generalization of their results by comparing classical and Bayesian parameter estimates from six additional datasets and specifically for panel versus cross‐sectional data. In general, our results suggest that the two methods provide similar results, with less similarity for cross‐sectional data than for panel data. Copyright © 2016 John Wiley & Sons, Ltd.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1002/jae.2513
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:32:y:2017:i:2:p:470-476
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().