Weak‐instrument robust inference for two‐sample instrumental variables regression
Jaerim Choi (),
Jiaying Gu and
Shu Shen
Journal of Applied Econometrics, 2018, vol. 33, issue 1, 109-125
Abstract:
Instrumental variable (IV) methods for regression are well established. More recently, methods have been developed for statistical inference when the instruments are weakly correlated with the endogenous regressor, so that estimators are biased and no longer asymptotically normally distributed. This paper extends such inference to the case where two separate samples are used to implement instrumental variables estimation. We also relax the restrictive assumptions of homoskedastic error structure and equal moments of exogenous covariates across two samples commonly employed in the two‐sample IV literature for strong IV inference. Monte Carlo experiments show good size properties of the proposed tests regardless of the strength of the instruments. We apply the proposed methods to two seminal empirical studies that adopt the two‐sample IV framework.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/jae.2580
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:33:y:2018:i:1:p:109-125
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().