A sequential Monte Carlo approach to inference in multiple‐equation Markov‐switching models
Mark Bognanni and
Edward Herbst
Journal of Applied Econometrics, 2018, vol. 33, issue 1, 126-140
Abstract:
Vector autoregressions with Markov‐switching parameters (MS‐VARs) offer substantial gains in data fit over VARs with constant parameters. However, Bayesian inference for MS‐VARs has remained challenging, impeding their uptake for empirical applications. We show that sequential Monte Carlo (SMC) estimators can accurately estimate MS‐VAR posteriors. Relative to multi‐step, model‐specific MCMC routines, SMC has the advantages of generality, parallelizability, and freedom from reliance on particular analytical relationships between prior and likelihood. We use SMC's flexibility to demonstrate that model selection among MS‐VARs can be highly sensitive to the choice of prior.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://doi.org/10.1002/jae.2582
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:33:y:2018:i:1:p:126-140
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().