Bayesian model comparison for time‐varying parameter VARs with stochastic volatility
Joshua Chan and
Eric Eisenstat
Journal of Applied Econometrics, 2018, vol. 33, issue 4, 509-532
Abstract:
We develop importance sampling methods for computing two popular Bayesian model comparison criteria, namely, the marginal likelihood and the deviance information criterion (DIC) for time‐varying parameter vector autoregressions (TVP‐VARs), where both the regression coefficients and volatilities are drifting over time. The proposed estimators are based on the integrated likelihood, which are substantially more reliable than alternatives. Using US data, we find overwhelming support for the TVP‐VAR with stochastic volatility compared to a conventional constant coefficients VAR with homoskedastic innovations. Most of the gains, however, appear to have come from allowing for stochastic volatility rather than time variation in the VAR coefficients or contemporaneous relationships. Indeed, according to both criteria, a constant coefficients VAR with stochastic volatility outperforms the more general model with time‐varying parameters.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (90)
Downloads: (external link)
https://doi.org/10.1002/jae.2617
Related works:
Working Paper: Bayesian model comparison for time-varying parameter VARs with stochastic volatility (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:33:y:2018:i:4:p:509-532
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().