Understanding the economic determinants of the severity of operational losses: A regularized generalized Pareto regression approach
Julien Hambuckers,
Andreas Groll and
Thomas Kneib
Journal of Applied Econometrics, 2018, vol. 33, issue 6, 898-935
Abstract:
We investigate a novel database of 10,217 extreme operational losses from the Italian bank UniCredit. Our goal is to shed light on the dependence between the severity distribution of these losses and a set of macroeconomic, financial, and firm‐specific factors. To do so, we use generalized Pareto regression techniques, where both the scale and shape parameters are assumed to be functions of these explanatory variables. We perform the selection of the relevant covariates with a state‐of‐the‐art penalized‐likelihood estimation procedure relying on L1‐penalty terms. A simulation study indicates that this approach efficiently selects covariates of interest and tackles spurious regression issues encountered when dealing with integrated time series. Lastly, we illustrate the impact of different economic scenarios on the requested capital for operational risk. Our results have important implications in terms of risk management and regulatory policy.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.1002/jae.2638
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:33:y:2018:i:6:p:898-935
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().