An empirical investigation of direct and iterated multistep conditional forecasts
Michael McCracken and
Joseph T. McGillicuddy
Journal of Applied Econometrics, 2019, vol. 34, issue 2, 181-204
Abstract:
When constructing unconditional point forecasts, both direct and iterated multistep (DMS and IMS) approaches are common. However, in the context of producing conditional forecasts, IMS approaches based on vector autoregressions are far more common than simpler DMS models. This is despite the fact that there are theoretical reasons to believe that DMS models are more robust to misspecification than are IMS models. In the context of unconditional forecasts, Marcellino et al. (Journal of Econometrics, 2006, 135, 499–526) investigate the empirical relevance of these theories. In this paper, we extend that work to conditional forecasts. We do so based on linear bivariate and trivariate models estimated using a large dataset of macroeconomic time series. Over comparable samples, our results reinforce those in Marcellino et al.: the IMS approach is typically a bit better than DMS with significant improvements only at longer horizons. In contrast, when we focus on the Great Moderation sample we find a marked improvement in the DMS approach relative to IMS. The distinction is particularly clear when we forecast nominal rather than real variables where the relative gains can be substantial.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1002/jae.2668
Related works:
Working Paper: An Empirical Investigation of Direct and Iterated Multistep Conditional Forecasts (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:34:y:2019:i:2:p:181-204
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().