Steady‐state modeling and macroeconomic forecasting quality
Dimitrios Louzis
Journal of Applied Econometrics, 2019, vol. 34, issue 2, 285-314
Abstract:
Vector autoregressions (VARs) with informative steady‐state priors are standard forecasting tools in empirical macroeconomics. This study proposes (i) an adaptive hierarchical normal‐gamma prior on steady states, (ii) a time‐varying steady‐state specification which accounts for structural breaks in the unconditional mean, and (iii) a generalization of steady‐state VARs with fat‐tailed and heteroskedastic error terms. Empirical analysis, based on a real‐time dataset of 14 macroeconomic variables, shows that, overall, the hierarchical steady‐state specifications materially improve out‐of‐sample forecasting for forecasting horizons longer than 1 year, while the time‐varying specifications generate superior forecasts for variables with significant changes in their unconditional mean.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1002/jae.2657
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:34:y:2019:i:2:p:285-314
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().