Mixed‐frequency models with moving‐average components
Claudia Foroni,
Massimiliano Marcellino and
Dalibor Stevanovic
Journal of Applied Econometrics, 2019, vol. 34, issue 5, 688-706
Abstract:
Temporal aggregation in general introduces a moving‐average (MA) component in the aggregated model. A similar feature emerges when not all but only a few variables are aggregated, which generates a mixed‐frequency (MF) model. The MA component is generally neglected, likely to preserve the possibility of ordinary least squares estimation, but the consequences have never been properly studied in the MF context. In this paper we show, analytically, in Monte Carlo simulations and in a forecasting application on US macroeconomic variables, the relevance of considering the MA component in MF mixed‐data sampling (MIDAS) and unrestricted MIDAS models (MIDAS–autoregressive moving average (ARMA) and UMIDAS‐ARMA). Specifically, the simulation results indicate that the short‐term forecasting performance of MIDAS‐ARMA and UMIDAS‐ARMA are better than that of, respectively, MIDAS and UMIDAS. The empirical applications on nowcasting US gross domestic product (GDP) growth, investment growth, and GDP deflator inflation confirm this ranking. Moreover, in both simulation and empirical results, MIDAS‐ARMA is better than UMIDAS‐ARMA.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/jae.2701
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:34:y:2019:i:5:p:688-706
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().