Comovements and asymmetric tail dependence in state housing prices in the USA: A nonparametric approach
Haitao Huang,
Liang Peng and
Vincent Yao
Journal of Applied Econometrics, 2019, vol. 34, issue 5, 843-849
Abstract:
We reexamine the methods used in estimating comovements among US regional home prices and find that there are insufficient moments to ensure a normal limit necessary for employing the quasi‐maximum likelihood estimator. Hence we propose applying the self‐weighted quasi‐maximum exponential likelihood estimator and a bootstrap method to test and account for the asymmetry of comovements as well as different magnitudes across state pairs. Our results reveal interstate asymmetric tail dependence based on observed house price indices rather than residuals from fitting autoregressive–generalized autoregressive conditional heteroskedasticity (AR‐GARCH) models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/jae.2703
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:34:y:2019:i:5:p:843-849
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().