Multivariate dynamic intensity peaks‐over‐threshold models
Nikolaus Hautsch and
Rodrigo Herrera
Journal of Applied Econometrics, 2020, vol. 35, issue 2, 248-272
Abstract:
We propose a multivariate dynamic intensity peaks‐over‐threshold model to capture extremes in multivariate return processes. The random occurrence of extremes is modeled by a multivariate dynamic intensity model, while temporal clustering of their size is captured by an autoregressive multiplicative error model. Applying the model to daily returns of three major stock indexes yields strong empirical support for a temporal clustering of both the occurrence and the size of extremes. Backtesting value‐at‐risk and expected shortfall forecasts shows that the consideration of clustering effects and of feedback between the magnitudes and the intensity of extremes results in better forecasts of risk.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/jae.2741
Related works:
Working Paper: Multivariate dynamic intensity peaks-over-threshold models (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:35:y:2020:i:2:p:248-272
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().