Common correlated effects estimation of heterogeneous dynamic panel quantile regression models
Matthew Harding,
Carlos Lamarche and
Mohammad Pesaran
Journal of Applied Econometrics, 2020, vol. 35, issue 3, 294-314
Abstract:
This paper proposes a quantile regression estimator for a heterogeneous panel model with lagged dependent variables and interactive effects. The paper adopts the Common Correlated Effects (CCE) approach proposed in the literature and demonstrates that the extension to the estimation of dynamic quantile regression models is feasible under similar conditions to the ones used in the literature. The new quantile regression estimator is shown to be consistent and its asymptotic distribution is derived. Monte Carlo studies are carried out to study the small sample behavior of the proposed approach. The evidence shows that the estimator can significantly improve on the performance of existing estimators as long as the time series dimension of the panel is large. We present an application to the evaluation of Time‐of‐Use pricing using a large randomized control trial.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://doi.org/10.1002/jae.2753
Related works:
Working Paper: Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Quantile Regression Models (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:35:y:2020:i:3:p:294-314
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().