Differencing versus nondifferencing in factor‐based forecasting
In Choi and
Hanbat Jeong
Journal of Applied Econometrics, 2020, vol. 35, issue 6, 728-750
Abstract:
This paper studies performance of factor‐based forecasts using differenced and nondifferenced data. Approximate variances of forecasting errors from the two forecasts are derived and compared. It is reported that the forecast using nondifferenced data tends to be more accurate than that using differenced data. This paper conducts simulations to compare root mean squared forecasting errors of the two competing forecasts. Simulation results indicate that forecasting using nondifferenced data performs better. The advantage of using nondifferenced data is more pronounced when a forecasting horizon is long and the number of factors is large. This paper applies the two competing forecasting methods to 68 I(1) monthly US macroeconomic variables across a range of forecasting horizons and sampling periods. We also provide detailed forecasting analysis on US inflation and industrial production. We find that forecasts using nondifferenced data tend to outperform those using differenced data.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.2777
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:35:y:2020:i:6:p:728-750
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().