EconPapers    
Economics at your fingertips  
 

Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction

Mengheng Li and Siem Jan Koopman

Journal of Applied Econometrics, 2021, vol. 36, issue 5, 614-627

Abstract: The unobserved components time series model with stochastic volatility has gained much interest in econometrics, especially for the purpose of modelling and forecasting inflation. We present a feasible simulated maximum likelihood method for parameter estimation from a classical perspective. The method can also be used for evaluating the marginal likelihood function in a Bayesian analysis. We show that our simulation‐based method is computationally feasible, for both univariate and multivariate models. We assess the performance of the method in a Monte Carlo study. In an empirical study, we analyse U.S. headline inflation using different univariate and multivariate model specifications.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/jae.2831

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:36:y:2021:i:5:p:614-627

Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252

Access Statistics for this article

Journal of Applied Econometrics is currently edited by M. Hashem Pesaran

More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:japmet:v:36:y:2021:i:5:p:614-627