Density forecasting with Bayesian Vector Autoregressive models under macroeconomic data uncertainty
Michael Clements and
Ana Beatriz Galvão
Journal of Applied Econometrics, 2023, vol. 38, issue 2, 164-185
Abstract:
Macroeconomic data are subject to data revisions. Yet, the usual way of generating real‐time density forecasts from Bayesian Vector Autoregressive (BVAR) models makes no allowance for data uncertainty from future data revisions. We develop methods of allowing for data uncertainty when forecasting with BVAR models with stochastic volatility. First, the BVAR forecasting model is estimated on real‐time vintages. Second, the BVAR model is jointly estimated with a model of data revisions such that forecasts are conditioned on estimates of the ‘true’ values. We find that this second method generally improves upon conventional practice for density forecasting, especially for the United States.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/jae.2944
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:38:y:2023:i:2:p:164-185
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().