Testing identifying assumptions in bivariate probit models
Santiago Acerenza,
Otavio Bartalotti and
Desire Kedagni
Journal of Applied Econometrics, 2023, vol. 38, issue 3, 407-422
Abstract:
This paper considers the bivariate probit model's identifying assumptions: linear index specification, joint normality of errors, instrument exogeneity, and relevance. First, we develop sharp testable equalities that detect all possible observable violations of the assumptions. Second, we propose an easy‐to‐implement testing procedure for the model's validity using existing inference methods for intersection bounds. The test achieves correct empirical size and performs well in detecting violations of the conditions in simulations. Finally, we provide a road map on what to do when the bivariate probit model is rejected, including novel bounds for the average treatment effect that relax the normality assumption.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/jae.2956
Related works:
Working Paper: Testing Identifying Assumptions in Bivariate Probit Models (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:38:y:2023:i:3:p:407-422
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().