Robust forecast superiority testing with an application to assessing pools of expert forecasters
Valentina Corradi,
Sainan Jin and
Norman R. Swanson
Journal of Applied Econometrics, 2023, vol. 38, issue 4, 596-622
Abstract:
We develop forecast superiority tests that are robust to the choice of loss function by following Jin, Corradi and Swanson (JCS: 2017), and relying on a mapping between generic loss forecast evaluation and stochastic dominance principles. However, unlike JCS tests, which are not uniformly valid and are correctly sized only under the least favorable case, our tests are uniformly asymptotically valid and non‐conservative. To show this, we establish uniform convergence of HAC variance estimators. Monte Carlo experiments indicate good finite sample performance of our tests, and an empirical illustration suggests that prior forecast accuracy matters in the Survey of Professional Forecasters.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.2962
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:38:y:2023:i:4:p:596-622
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().