Fast and reliable jackknife and bootstrap methods for cluster‐robust inference
James MacKinnon,
Morten Nielsen and
Matthew Webb
Journal of Applied Econometrics, 2023, vol. 38, issue 5, 671-694
Abstract:
We provide computationally attractive methods to obtain jackknife‐based cluster‐robust variance matrix estimators (CRVEs) for linear regression models estimated by least squares. We also propose several new variants of the wild cluster bootstrap, which involve these CRVEs, jackknife‐based bootstrap data‐generating processes, or both. Extensive simulation experiments suggest that the new methods can provide much more reliable inferences than existing ones in cases where the latter are not trustworthy, such as when the number of clusters is small and/or cluster sizes vary substantially. Three empirical examples illustrate the new methods.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/jae.2969
Related works:
Working Paper: Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference (2023) 
Working Paper: Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:38:y:2023:i:5:p:671-694
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().