A maximum likelihood bunching estimator of the elasticity of taxable income
Thomas Aronsson,
Katharina Jenderny and
Gauthier Lanot
Journal of Applied Econometrics, 2024, vol. 39, issue 1, 200-216
Abstract:
This paper develops a maximum likelihood (ML) bunching estimator of the elasticity of taxable income (ETI). Our structural approach provides a natural framework to simultaneously account for unobserved preference heterogeneity and optimization errors and for measuring their relative importance. We characterize the conditions under which the parameters of the model are identified and show that the ML estimator performs well in terms of bias and precision. The paper also contains an empirical application using Swedish data, showing that both the ETI and the standard deviation of the optimization friction are precisely estimated, albeit relatively small.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/jae.3015
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:1:p:200-216
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().