EconPapers    
Economics at your fingertips  
 

Forecasting and stress testing with quantile vector autoregression

Sulkhan Chavleishvili and Simone Manganelli

Journal of Applied Econometrics, 2024, vol. 39, issue 1, 66-85

Abstract: A quantile vector autoregressive (VAR) model, unlike standard VAR, traces the interaction among the endogenous random variables at any quantile. Quantile forecasts are obtained by factorizing the joint distribution in a recursive structure but cannot be obtained from reduced form estimation. Identification strategies and structural quantile impulse response functions are derived as generalization of the VAR model. The model is estimated using real and financial variables for the euro area. The dynamic properties of the system change across quantiles. This is relevant for stress testing exercises, whose goal is to forecast the tail behavior of the economy when hit by large financial and real shocks.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/jae.3009

Related works:
Working Paper: Forecasting and stress testing with quantile vector autoregression (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:1:p:66-85

Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252

Access Statistics for this article

Journal of Applied Econometrics is currently edited by M. Hashem Pesaran

More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:japmet:v:39:y:2024:i:1:p:66-85