Forecasting and stress testing with quantile vector autoregression
Sulkhan Chavleishvili and
Simone Manganelli
Journal of Applied Econometrics, 2024, vol. 39, issue 1, 66-85
Abstract:
A quantile vector autoregressive (VAR) model, unlike standard VAR, traces the interaction among the endogenous random variables at any quantile. Quantile forecasts are obtained by factorizing the joint distribution in a recursive structure but cannot be obtained from reduced form estimation. Identification strategies and structural quantile impulse response functions are derived as generalization of the VAR model. The model is estimated using real and financial variables for the euro area. The dynamic properties of the system change across quantiles. This is relevant for stress testing exercises, whose goal is to forecast the tail behavior of the economy when hit by large financial and real shocks.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1002/jae.3009
Related works:
Working Paper: Forecasting and stress testing with quantile vector autoregression (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:39:y:2024:i:1:p:66-85
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().