Binary Response Model With Many Weak Instruments
Dakyung Seong ()
Journal of Applied Econometrics, 2025, vol. 40, issue 2, 214-230
Abstract:
This paper considers an endogenous binary response model with many weak instruments. We employ a control function approach and a regularization scheme to obtain better estimation results for the endogenous binary response model in the presence of many weak instruments. Two consistent and asymptotically normally distributed estimators are provided, each of which is called a regularized conditional maximum likelihood estimator (RCMLE) and a regularized nonlinear least squares estimator (RNLSE). Monte Carlo simulations show that the proposed estimators outperform the existing ones when there are many weak instruments. We use the proposed estimation method to examine the effect of family income on college completion.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/jae.3101
Related works:
Working Paper: Binary response model with many weak instruments (2024) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:japmet:v:40:y:2025:i:2:p:214-230
Ordering information: This journal article can be ordered from
http://www3.intersci ... e.jsp?issn=0883-7252
Access Statistics for this article
Journal of Applied Econometrics is currently edited by M. Hashem Pesaran
More articles in Journal of Applied Econometrics from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().