EconPapers    
Economics at your fingertips  
 

Forecasting Longevity Gains Using a Seemingly Unrelated Time Series Model

César Neves, Cristiano Fernandes and Álvaro Veiga

Journal of Forecasting, 2015, vol. 34, issue 8, 661-674

Abstract: In this paper a multivariate time series model using the seemingly unrelated time series equation (SUTSE) framework is proposed to forecast longevity gains. The proposed model is represented in state space form and uses Kalman filtering to estimate the unobservable components and fixed parameters. We apply the model both to male mortality rates in Portugal and the USA. Our results compare favorably, in terms of mean absolute percentage error, in‐sample and out‐of‐sample, to those obtained by the Lee–Carter method and some of its extensions. Copyright © 2015 John Wiley & Sons, Ltd.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:34:y:2015:i:8:p:661-674

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:34:y:2015:i:8:p:661-674