Comparison of Near Neighbour and Neural Network in Travel Forecasting
Elena Olmedo
Journal of Forecasting, 2016, vol. 35, issue 3, 217-223
Abstract:
In this paper we confirm the existence of nonlinear dynamics in a time series of airport arrivals. We subsequently propose alternative non‐parametric forecasting techniques to be used in a travel forecasting problem, emphasizing the difference between the reconstruction and learning approach. We compare the results achieved in point prediction versus sign prediction. The reconstruction approach offers better results in sign prediction and the learning approach in point prediction. Copyright © 2015 John Wiley & Sons, Ltd.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:35:y:2016:i:3:p:217-223
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().