Modeling Realized Volatility Dynamics with a Genetic Algorithm
Hui Qu and
Ping Ji
Journal of Forecasting, 2016, vol. 35, issue 5, 434-444
Abstract:
The heterogeneous autoregressive model of realized volatility (HAR‐RV) is inspired by the heterogeneous market hypothesis and characterizes realized volatility dynamics through a linear function of lagged daily, weekly and monthly realized volatilities with a (1, 5, 22) lag structure. Considering that different markets can have different heterogeneous structures and a market's heterogeneous structure can vary over time, we build an adaptive heterogeneous autoregressive model of realized volatility (AHAR‐RV), whose lag structure is optimized with a genetic algorithm. Using nine common loss functions and the superior predictive ability test, we find that our AHAR‐RV model and its extensions provide significantly better out‐of‐sample volatility forecasts for the CSI 300 index than the corresponding HAR models. Furthermore, the AHAR‐RV model significantly outperforms all the other models under most loss functions. Besides, we confirm that Chinese stock markets' heterogeneous structure varies over time and the (1, 5, 22) lag structure is not the optimal choice. Copyright © 2016 John Wiley & Sons, Ltd.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:35:y:2016:i:5:p:434-444
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().