The Informational Content of the Term Spread in Forecasting the US Inflation Rate: A Nonlinear Approach
Vasilios Plakandaras,
Periklis Gogas,
Theophilos Papadimitriou and
Rangan Gupta
Journal of Forecasting, 2017, vol. 36, issue 2, 109-121
Abstract:
The difficulty in modelling inflation and the significance in discovering the underlying data‐generating process of inflation is expressed in an extensive literature regarding inflation forecasting. In this paper we evaluate nonlinear machine learning and econometric methodologies in forecasting US inflation based on autoregressive and structural models of the term structure. We employ two nonlinear methodologies: the econometric least absolute shrinkage and selection operator (LASSO) and the machine‐learning support vector regression (SVR) method. The SVR has never been used before in inflation forecasting considering the term spread as a regressor. In doing so, we use a long monthly dataset spanning the period 1871:1–2015:3 that covers the entire history of inflation in the US economy. For comparison purposes we also use ordinary least squares regression models as a benchmark. In order to evaluate the contribution of the term spread in inflation forecasting in different time periods, we measure the out‐of‐sample forecasting performance of all models using rolling window regressions. Considering various forecasting horizons, the empirical evidence suggests that the structural models do not outperform the autoregressive ones, regardless of the model's method. Thus we conclude that the term spread models are not more accurate than autoregressive models in inflation forecasting. Copyright © 2016 John Wiley & Sons, Ltd.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/
Related works:
Working Paper: The Informational Content of the Term-Spread in Forecasting the U.S. Inflation Rate: A Nonlinear Approach (2019) 
Working Paper: The Informational Content of the Term-Spread in Forecasting the U.S. Inflation Rate: A Nonlinear Approach (2015)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:36:y:2017:i:2:p:109-121
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().