Forecasting key US macroeconomic variables with a factor‐augmented Qual VAR
Rangan Gupta,
Eric Olson () and
Mark Wohar ()
Journal of Forecasting, 2017, vol. 36, issue 6, 640-650
Abstract:
In this paper, we first extract factors from a monthly dataset of 130 macroeconomic and financial variables. These extracted factors are then used to construct a factor‐augmented qualitative vector autoregressive (FA‐Qual VAR) model to forecast industrial production growth, inflation, the Federal funds rate, and the term spread based on a pseudo out‐of‐sample recursive forecasting exercise over an out‐of‐sample period of 1980:1 to 2014:12, using an in‐sample period of 1960:1 to 1979:12. Short‐, medium‐, and long‐run horizons of 1, 6, 12, and 24 months ahead are considered. The forecast from the FA‐Qual VAR is compared with that of a standard VAR model, a Qual VAR model, and a factor‐augmented VAR (FAVAR). In general, we observe that the FA‐Qual VAR tends to perform significantly better than the VAR, Qual VAR and FAVAR (barring some exceptions relative to the latter). In addition, we find that the Qual VARs are also well equipped in forecasting probability of recessions when compared to probit models.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/
Related works:
Working Paper: Forecasting Key US Macroeconomic Variables with a Factor-Augmented Qual VAR (2015)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:36:y:2017:i:6:p:640-650
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().