A test of the joint efficiency of macroeconomic forecasts using multivariate random forests
Christoph Behrens,
Christian Pierdzioch and
Marian Risse
Journal of Forecasting, 2018, vol. 37, issue 5, 560-572
Abstract:
We contribute to recent research on the joint evaluation of the properties of macroeconomic forecasts in a multivariate setting. The specific property of forecasts that we are interested in is their joint efficiency. We study the joint efficiency of forecasts by means of multivariate random forests, which we use to model the links between forecast errors and predictor variables in a forecaster's information set. We then use permutation tests to study whether the Mahalanobis distance between the predicted forecast errors for the growth and inflation forecasts of four leading German economic research institutes and actual forecast errors is significantly smaller than under the null hypothesis of forecast efficiency. We reject joint efficiency in several cases, but also document heterogeneity across research institutes with regard to the joint efficiency of their forecasts.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1002/for.2520
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:37:y:2018:i:5:p:560-572
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().