Financial volatility modeling: The feedback asymmetric conditional autoregressive range model
Haibin Xie
Journal of Forecasting, 2019, vol. 38, issue 1, 11-28
Abstract:
An implied assumption in the asymmetric conditional autoregressive range (ACARR) model is that upward range is independent of downward range. This paper scrutinizes this assumption on a broad variety of stock indices. Instead of independence, we find significant cross‐interdependence between the upward range and the downward range. Regression test shows that the cross‐interdependence cannot be explained by leverage effect. To include the cross‐interdependence, a feedback asymmetric conditional autoregressive range (FACARR) model is proposed. Empirical studies are performed on a variety of stock indices, and the results show that the FACARR model outperforms the ACARR model with high significance for both in‐sample and out‐of‐sample forecasting.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1002/for.2548
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:1:p:11-28
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().