Adaptive learning from model space
Jan Prüser
Journal of Forecasting, 2019, vol. 38, issue 1, 29-38
Abstract:
Dynamic model averaging (DMA) is used extensively for the purpose of economic forecasting. This study extends the framework of DMA by introducing adaptive learning from model space. In the conventional DMA framework all models are estimated independently and hence the information of the other models is left unexploited. In order to exploit the information in the estimation of the individual time‐varying parameter models, this paper proposes not only to average over the forecasts but, in addition, also to dynamically average over the time‐varying parameters. This is done by approximating the mixture of individual posteriors with a single posterior, which is then used in the upcoming period as the prior for each of the individual models. The relevance of this extension is illustrated in three empirical examples involving forecasting US inflation, US consumption expenditures, and forecasting of five major US exchange rate returns. In all applications adaptive learning from model space delivers improvements in out‐of‐sample forecasting performance.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2549
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:1:p:29-38
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().