A class of periodic trend models for seasonal time series
Tommaso Proietti,
Martyna Marczak and
Gianluigi Mazzi
Journal of Forecasting, 2019, vol. 38, issue 2, 106-121
Abstract:
Trend and seasonality are the most prominent features of economic time series that are observed at the subannual frequency. Modeling these components serves a variety of analytical purposes, including seasonal adjustment and forecasting. In this paper we introduce unobserved components models for which both the trend and seasonal components arise from systematically sampling a multivariate transition equation, according to which each season evolves as a random walk with a drift. By modeling the disturbance covariance matrix we can encompass traditional models for seasonal time series, like the basic structural model, and can formulate more elaborate ones, dealing with season specific features, such as seasonal heterogeneity and correlation, along with the different role of the nonstationary cycles defined at the fundamental and the harmonic frequencies in determining the shape of the seasonal pattern.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2562
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:2:p:106-121
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().