Real‐time inflation forecast combination for time‐varying coefficient models
Bo Zhang
Journal of Forecasting, 2019, vol. 38, issue 3, 175-191
Abstract:
We use real‐time macroeconomic variables and combination forecasts with both time‐varying weights and equal weights to forecast inflation in the USA. The combination forecasts compare three sets of commonly used time‐varying coefficient autoregressive models: Gaussian distributed errors, errors with stochastic volatility, and errors with moving average stochastic volatility. Both point forecasts and density forecasts suggest that models combined by equal weights do not produce worse forecasts than those with time‐varying weights. We also find that variable selection, the allowance of time‐varying lag length choice, and the stochastic volatility specification significantly improve forecast performance over standard benchmarks. Finally, when compared with the Survey of Professional Forecasters, the results of the best combination model are found to be highly competitive during the 2007/08 financial crisis.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/for.2563
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:3:p:175-191
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().