Enhancing survey‐based investment forecasts
Ciaran Driver and
Nigel Meade
Journal of Forecasting, 2019, vol. 38, issue 3, 236-255
Abstract:
We investigate the accuracy of capital investment predictors from a national business survey of South African manufacturing. Based on data available to correspondents at the time of survey completion, we propose variables that might inform the confidence that can be attached to their predictions. Having calibrated the survey predictors' directional accuracy, we model the probability of a correct directional prediction using logistic regression with the proposed variables. For point forecasting, we compare the accuracy of rescaled survey forecasts with time series benchmarks and some survey/time series hybrid models. In addition, using the same set of variables, we model the magnitude of survey prediction errors. Directional forecast tests showed that three out of four survey predictors have value but are biased and inefficient. For shorter horizons we found that survey forecasts, enhanced by time series data, significantly improved point forecasting accuracy. For longer horizons the survey predictors were at least as accurate as alternatives. The usefulness of the more accurate of the predictors examined is enhanced by auxiliary information, namely the probability of directional accuracy and the estimated error magnitude.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1002/for.2567
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:3:p:236-255
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().