EconPapers    
Economics at your fingertips  
 

A modified sequential Monte Carlo procedure for the efficient recursive estimation of extreme quantiles

Serdar Neslihanoglu and Paresh Date

Journal of Forecasting, 2019, vol. 38, issue 5, 390-399

Abstract: Many applications in science involve finding estimates of unobserved variables from observed data, by combining model predictions with observations. The sequential Monte Carlo (SMC) is a well‐established technique for estimating the distribution of unobserved variables that are conditional on current observations. While the SMC is very successful at estimating the first central moments, estimating the extreme quantiles of a distribution via the current SMC methods is computationally very expensive. The purpose of this paper is to develop a new framework using probability distortion. We use an SMC with distorted weights in order to make computationally efficient inferences about tail probabilities of future interest rates using the Cox–Ingersoll–Ross (CIR) model, as well as with an observed yield curve. We show that the proposed method yields acceptable estimates about tail quantiles at a fraction of the computational cost of the full Monte Carlo.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.2568

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:5:p:390-399

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:38:y:2019:i:5:p:390-399