Predictive power of Markovian models: Evidence from US recession forecasting
Ruilin Tian and
Gang Shen
Journal of Forecasting, 2019, vol. 38, issue 6, 525-551
Abstract:
This paper provides extensions to the application of Markovian models in predicting US recessions. The proposed Markovian models, including the hidden Markov and Markov models, incorporate the temporal autocorrelation of binary recession indicators in a traditional but natural way. Considering interest rates and spreads, stock prices, monetary aggregates, and output as the candidate predictors, we examine the out‐of‐sample performance of the Markovian models in predicting the recessions 1–12 months ahead, through rolling window experiments as well as experiments based on the fixed full training set. Our study shows that the Markovian models are superior to the probit models in detecting a recession and capturing the recession duration. But sometimes the rolling window method may affect the models' prediction reliability as it could incorporate the economy's unsystematic adjustments and erratic shocks into the forecast. In addition, the interest rate spreads and output are the most efficient predictor variables in explaining business cycles.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1002/for.2579
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:6:p:525-551
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().