EconPapers    
Economics at your fingertips  
 

Forecasting with many predictors using Bayesian additive regression trees

Jan Prüser

Journal of Forecasting, 2019, vol. 38, issue 7, 621-631

Abstract: Forecasting with many predictors provides the opportunity to exploit a much richer base of information. However, macroeconomic time series are typically rather short, raising problems for conventional econometric models. This paper explores the use of Bayesian additive regression trees (Bart) from the machine learning literature to forecast macroeconomic time series in a predictor‐rich environment. The interest lies in forecasting nine key macroeconomic variables of interest for government budget planning, central bank policy making and business decisions. It turns out that Bart is a valuable addition to existing methods for handling high dimensional data sets in a macroeconomic context.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/for.2587

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:7:p:621-631

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:38:y:2019:i:7:p:621-631