Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria
Umar Farooq and
Muhammad Ali Jibran Qamar
Journal of Forecasting, 2019, vol. 38, issue 7, 632-648
Abstract:
This research proposes a prediction model of multistage financial distress (MSFD) after considering contextual and methodological issues regarding sampling, feature and model selection criteria. Financial distress is defined as a three‐stage process showing different nature and intensity of financial problems. It is argued that applied definition of distress is independent of legal framework and its predictability would provide more practical solutions. The final sample is selected after industry adjustments and oversampling the data. A wrapper subset data mining approach is applied to extract the most relevant features from financial statement and stock market indicators. An ensemble approach using a combination of DTNB (decision table and naïve base hybrid model), LMT (logistic model tree) and A2DE (alternative N dependence estimator) Bayesian models is used to develop the final prediction model. The performance of all the models is evaluated using a 10‐fold cross‐validation method. Results showed that the proposed model predicted MSFD with 84.06% accuracy. This accuracy increased to 89.57% when a 33.33% cut‐off value was considered. Hence the proposed model is accurate and reliable to identify the true nature and intensity of financial problems regardless of the contextual legal framework.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://doi.org/10.1002/for.2588
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:7:p:632-648
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().