EconPapers    
Economics at your fingertips  
 

Out‐of‐sample volatility prediction: A new mixed‐frequency approach

Yaojie Zhang, Feng Ma, Tianyi Wang () and Li Liu

Journal of Forecasting, 2019, vol. 38, issue 7, 669-680

Abstract: This paper proposes a new mixed‐frequency approach to predict stock return volatilities out‐of‐sample. Based on the strategy of momentum of predictability (MoP), our mixed‐frequency approach has a model switching mechanism that switches between generalized autoregressive conditional heteroskedasticity (GARCH)‐class models that only use low‐frequency data and heterogeneous autoregressive models of realized volatility (HAR‐RV)‐type that only use high‐frequency data. The MoP model simply selects a forecast with relatively good past performance between the GARCH‐class and HAR‐RV‐type forecasts. The model confidence set (MCS) test shows that our MoP strategy significantly outperforms the competing models, which is robust to various settings. The MoP test shows that a relatively good recent past forecasting performance of the GARCH‐class or HAR‐RV‐type model is significantly associated with a relatively good current performance, supporting the success of the MoP model.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
https://doi.org/10.1002/for.2590

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:38:y:2019:i:7:p:669-680

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jforec:v:38:y:2019:i:7:p:669-680