EconPapers    
Economics at your fingertips  
 

A likelihood ratio and Markov chain‐based method to evaluate density forecasting

Yushu Li and Jonas Andersson

Journal of Forecasting, 2020, vol. 39, issue 1, 47-55

Abstract: In this paper, we propose a likelihood ratio‐based method to evaluate density forecasts, which can jointly evaluate the unconditional forecasted distribution and dependence of the outcomes. Unlike the well‐known Berkowitz test, the proposed method does not require a parametric specification of time dynamics. We compare our method with the method proposed by several other tests and show that our methodology has very high power against both dependence and incorrect forecasting distributions. Moreover, the loss of power, caused by the nonparametric nature of the specification of the dynamics, is shown to be small compared to the Berkowitz test, even when the parametric form of dynamics is correctly specified in the latter method.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/for.2604

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:1:p:47-55

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:1:p:47-55