EconPapers    
Economics at your fingertips  
 

Forecasting of electricity price through a functional prediction of sale and purchase curves

Ismail Shah and Francesco Lisi ()

Journal of Forecasting, 2020, vol. 39, issue 2, 242-259

Abstract: This work proposes a new approach for the prediction of the electricity price based on forecasting aggregated purchase and sale curves. The basic idea is to model the hourly purchase and the sale curves, to predict them and to find the intersection of the predicted curves in order to obtain the predicted equilibrium market price and volume. Modeling and forecasting of purchase and sale curves is performed by means of functional data analysis methods. More specifically, parametric (FAR) and nonparametric (NPFAR) functional autoregressive models are considered and compared to some benchmarks. An appealing feature of the functional approach is that, unlike other methods, it provides insights into the sale and purchase mechanism connected with the price and demand formation process and can therefore be used for the optimization of bidding strategies. An application to the Italian electricity market (IPEX) is also provided, showing that NPFAR models lead to a statistically significant improvement in the forecasting accuracy.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://doi.org/10.1002/for.2624

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:2:p:242-259

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:2:p:242-259