EconPapers    
Economics at your fingertips  
 

Predicting loan default in peer‐to‐peer lending using narrative data

Yufei Xia, Lingyun He, Yinguo Li, Nana Liu and Yanlin Ding

Journal of Forecasting, 2020, vol. 39, issue 2, 260-280

Abstract: Peer‐to‐peer (P2P) lending is facing severe information asymmetry problems and depends highly on the internal credit scoring system. This paper provides a novel credit scoring model, which forecasts the probability of default for each applicant and guides the lenders' decision‐making in P2P lending. The proposal is expected to improve the existing credit scoring models in P2P lending from two aspects, namely the classifier and the usage of narrative data. We utilize an advanced gradient boosting decision tree technique (i.e., CatBoost) to predict default loans. Moreover, a soft information extraction technique based on keyword clustering is developed to compensate for the insufficient hard credit data. Validated on three real‐world datasets, the experimental results demonstrate that variables extracted from narrative data are powerful features, and the utilization of narrative data significantly improves the predictability relative to solely using hard information. The results of sensitivity analysis reveal that CatBoost outperforms the industry benchmark under different cluster numbers of extracted soft information; meanwhile a small number of clusters (e.g., three) is preferred for consideration of model performance, computational cost, and comprehensibility. We finally facilitate a discussion on practical implication and explanatory considerations.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1002/for.2625

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:2:p:260-280

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:2:p:260-280