EconPapers    
Economics at your fingertips  
 

A predictive model of train delays on a railway line

Chao Wen, Weiwei Mou, Ping Huang and Zhongcan Li

Journal of Forecasting, 2020, vol. 39, issue 3, 470-488

Abstract: Delay prediction is an important issue associated with train timetabling and dispatching. Based on real‐world operation records, accurate forecasting of delays is of immense significance in train operation and decisions of dispatchers. In this study, we established a model that illustrates the interaction between train delays and their affecting factors via train describer records on a Dutch railway line. Based on the main factors that affect train delay and the time series trend, we determined the independent and dependent variables. A long short‐term memory (LSTM) prediction model in which the actual delay time corresponded to the dependent variable was established via Python. Finally, the prediction accuracy of the random forest model and artificial neural network model was compared. The results indicated that the LSTM model outperformed the other two models.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1002/for.2639

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:3:p:470-488

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:470-488