EconPapers    
Economics at your fingertips  
 

Gaussian processes for daily demand prediction in tourism planning

Wai Kit Tsang and Dries F. Benoit

Journal of Forecasting, 2020, vol. 39, issue 3, 551-568

Abstract: This study proposes Gaussian processes to forecast daily hotel occupancy at a city level. Unlike other studies in the tourism demand prediction literature, the hotel occupancy rate is predicted on a daily basis and 45 days ahead of time using online hotel room price data. A predictive framework is introduced that highlights feature extraction and selection of the independent variables. This approach shows that the dependence on internal hotel occupancy data can be removed by making use of a proxy measure for hotel occupancy rate at a city level. Six forecasting methods are investigated, including linear regression, autoregressive integrated moving average and recent machine learning methods. The results indicate that Gaussian processes offer the best tradeoff between accuracy and interpretation by providing prediction intervals in addition to point forecasts. It is shown how the proposed framework improves managerial decision making in tourism planning.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/for.2644

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:3:p:551-568

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:3:p:551-568