EconPapers    
Economics at your fingertips  
 

Forecasting with unbalanced panel data

Badi Baltagi and Long Liu

Journal of Forecasting, 2020, vol. 39, issue 5, 709-724

Abstract: This paper derives the best linear unbiased prediction (BLUP) for an unbalanced panel data model. Starting with a simple error component regression model with unbalanced panel data and random effects, it generalizes the BLUP derived by Taub (Journal of Econometrics, 1979, 10, 103–108) to unbalanced panels. Next it derives the BLUP for an unequally spaced panel data model with serial correlation of the AR(1) type in the remainder disturbances considered by Baltagi and Wu (Econometric Theory, 1999, 15, 814–823). This in turn extends the BLUP for a panel data model with AR(1) type remainder disturbances derived by Baltagi and Li (Journal of Forecasting, 1992, 11, 561–567) from the balanced to the unequally spaced panel data case. The derivations are easily implemented and reduce to tractable expressions using an extension of the Fuller and Battese (Journal of Econometrics, 1974, 2, 67–78) transformation from the balanced to the unbalanced panel data case.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/for.2646

Related works:
Working Paper: Forecasting with Unbalanced Panel Data (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:5:p:709-724

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:5:p:709-724