Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods
Xiaobo Tang,
Shixuan Li,
Mingliang Tan and
Wenxuan Shi
Journal of Forecasting, 2020, vol. 39, issue 5, 769-787
Abstract:
Financial distress prediction (FDP) has been widely considered as a promising approach to reducing financial losses. While financial information comprises the traditional factors involved in FDP, nonfinancial factors have also been examined in recent studies. In light of this, the purpose of this study is to explore the integrated factors and multiple models that can improve the predictive performance of FDP models. This study proposes an FDP framework to reveal the financial distress features of listed Chinese companies, incorporating financial, management, and textual factors, and evaluating the prediction performance of multiple models in different time spans. To develop this framework, this study employs the wrapper‐based feature selection method to extract valuable features, and then constructs multiple single classifiers, ensemble classifiers, and deep learning models in order to predict financial distress. The experiment results indicate that management and textual factors can supplement traditional financial factors in FDP, especially textual ones. This study also discovers that integrated factors collected 4 years prior to the predicted benchmark year enable a more accurate prediction, and the ensemble classifiers and deep learning models developed can achieve satisfactory FDP performance. This study makes a novel contribution as it expands the predictive factors of financial distress and provides new findings that can have important implications for providing early warning signals of financial risk.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
https://doi.org/10.1002/for.2661
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:5:p:769-787
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().