Model averaging estimation for conditional volatility models with an application to stock market volatility forecast
Qingfeng Liu (),
Qingsong Yao and
Guoqing Zhao
Journal of Forecasting, 2020, vol. 39, issue 5, 841-863
Abstract:
This paper is concerned with model averaging estimation for conditional volatility models. Given a set of candidate models with different functional forms, we propose a model averaging estimator and forecast for conditional volatility, and construct the corresponding weight‐choosing criterion. Under some regulatory conditions, we show that the weight selected by the criterion asymptotically minimizes the true Kullback–Leibler divergence, which is the distributional approximation error, as well as the Itakura–Saito distance, which is the distance between the true and estimated or forecast conditional volatility. Monte Carlo experiments support our newly proposed method. As for the empirical applications of our method, we investigate a total of nine major stock market indices and make a 1‐day‐ahead volatility forecast for each data set. Empirical results show that the model averaging forecast achieves the highest accuracy in terms of all types of loss functions in most cases, which captures the movement of the unknown true conditional volatility.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/for.2659
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:5:p:841-863
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().