EconPapers    
Economics at your fingertips  
 

Predictive models for influence of primary delays using high‐speed train operation records

Zhongcan Li, Ping Huang, Chao Wen, Yixiong Tang and Xi Jiang

Journal of Forecasting, 2020, vol. 39, issue 8, 1198-1212

Abstract: Primary delays are the driving force behind delay propagation, and predicting the number of affected trains (NAT) and the total time of affected trains (TTAT) due to primary delay (PD) can provide reliable decision support for real‐time train dispatching. In this paper, based on real operation data from 2015 to 2016 at several stations along the Wuhan–Guangzhou high‐speed railway, NAT and TTAT influencing factors were determined after analyzing the PD propagation mechanism. The eXtreme Gradient BOOSTing (XGBOOST) algorithm was used to establish a NAT predictive model, and several machine learning methods were compared. The importance of different delayinfluencing factors was investigated. Then, the TTAT predictive model (using support vector regression (SVR) algorithms) was established based on the NAT predictive model. Results indicated that the XGBOOST algorithm performed well with the NAT predictive model, and SVR was the optimal model for TTAT prediction under the verification index (i.e., the ratio of the difference between the actual and predicted value was less than 1/2/3/4/5 min). Real operational data in 2018 were used to test the applicability of the NAT and TTAT models over time, and findings suggest that these models exhibit sound applicability over time based on XGBOOST and SVR, respectively.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/for.2685

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:39:y:2020:i:8:p:1198-1212

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:jforec:v:39:y:2020:i:8:p:1198-1212