Directional news impact curve
Stanislav Anatolyev
Journal of Forecasting, 2021, vol. 40, issue 1, 94-107
Abstract:
The directional news impact curve (DNIC) is a relationship between returns and the probability of next period's return exceeding a certain threshold—zero in particular. Using long series of S&P500 index returns and a number of parametric models suggested in the literature, as well and flexible semiparametric models, we investigate the shape of the DNIC and forecasting abilities of these models. The semiparametric approach reveals that the DNIC has complicated shapes characterized by nonsymmetry with respect to past returns and their signs, heterogeneity across the thresholds, and changes over time. Simple parametric models often miss some important features of the DNIC, but some nevertheless exhibit superior out‐of‐sample performance.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/for.2708
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:1:p:94-107
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().