Forecast performance and bubble analysis in noncausal MAR(1, 1) processes
Christian Gourieroux,
Andrew Hencic and
Joann Jasiak
Journal of Forecasting, 2021, vol. 40, issue 2, 301-326
Abstract:
This paper examines the performance of nonlinear short‐term forecasts of noncausal processes from closed‐form functional predictive density estimators. The processes considered have mixed causal–noncausal MAR(1, 1) dynamics and non‐Gaussian distributions with either finite or infinite variance. The quality of point forecasts is affected by spikes and bubbles in the trajectories of these processes, which also characterize many financial and economic time series. This is due to deformations of estimated predictive densities from multimodality during explosive episodes. We show that two‐step‐ahead predictive densities of future trajectories based on the MAR(1, 1) Cauchy process can be used as a new graphical tool for early detection of bubble outsets and bursts. The method is applied to the Bitcoin/US dollar exchange rates and commodity futures.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/for.2716
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:2:p:301-326
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().