EconPapers    
Economics at your fingertips  
 

Granger causality of bivariate stationary curve time series

Han Lin Shang, Kaiying Ji and Ufuk Beyaztas

Journal of Forecasting, 2021, vol. 40, issue 4, 626-635

Abstract: We study causality between bivariate curve time series using the Granger causality generalized measures of correlation. With this measure, we can investigate which curve time series Granger‐causes the other; in turn, it helps determine the predictability of any two curve time series. Illustrated by a climatology example, we find that the sea surface temperature Granger‐causes sea‐level atmospheric pressure. Motivated by a portfolio management application in finance, we single out those stocks that lead or lag behind Dow Jones industrial averages. Given a close relationship between S&P 500 index and crude oil price, we determine the leading and lagging variables.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1002/for.2732

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:4:p:626-635

Access Statistics for this article

Journal of Forecasting is currently edited by Derek W. Bunn

More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:wly:jforec:v:40:y:2021:i:4:p:626-635