Granger causality of bivariate stationary curve time series
Han Lin Shang,
Kaiying Ji and
Ufuk Beyaztas
Journal of Forecasting, 2021, vol. 40, issue 4, 626-635
Abstract:
We study causality between bivariate curve time series using the Granger causality generalized measures of correlation. With this measure, we can investigate which curve time series Granger‐causes the other; in turn, it helps determine the predictability of any two curve time series. Illustrated by a climatology example, we find that the sea surface temperature Granger‐causes sea‐level atmospheric pressure. Motivated by a portfolio management application in finance, we single out those stocks that lead or lag behind Dow Jones industrial averages. Given a close relationship between S&P 500 index and crude oil price, we determine the leading and lagging variables.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1002/for.2732
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:jforec:v:40:y:2021:i:4:p:626-635
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley Content Delivery ().